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Two-dimensional bubbles in slow viscous flows. Part 2 
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(Received 1 September 1972) 

The present paper considers the behaviour of a two-dimensional inviscid bubble 
when placed in viscous fluid whose velocity at large distances varies parabolically, 
and whose motion is governed by the equations of Stokes flow. For arbitrary 
values of the surface tension a t  the bubble interface, this free boundary problem 
can be reduced to a coupled pair of transcendental equations. 

When surface tension effects are large, the cross-section of the bubble is nearly 
circular. In  the symmetric situation, with the bubble at the centre of a parabolic 
velocity profile, a reduction of the surface tension first produces a fattening at 
the rear of the bubble which then distorts further to form a re-entrant cavity. 
The solution also shows that the bubble moves faster than the undisturbed fluid 
velocity at its centre. When in an asymmetric position, the bubble has a drift 
velocity taking it towards the symmetric position. 

1. Introduction 
In  an earlier paper (Richardson 1968, hereafter referred to as Part 1) complex- 

variable methods were used to examine some problems of two-dimensional 
Stokes flow involving free surfaces, with surface tension effects included. As 
an illustration, the behaviour of a two-dimensional inviscid bubble in (a) a shear 
flow, and (a) a pure straining motion was considered. It was shown that, in both 
cases, the bubble had an elliptical cross-section, the eccentricity and orientation 
of the ellipse being determined by a transcendental equation involving an 
elliptic integral. 

The present paper considers the problem of a two-dimensional inviscid bubble 
placed in a parabolic flow. The methods used are those of Part 1. The cross-section 
is now no longer elliptical, but the problem reduces to the solution of a coupled 
pair of transcendental equations involving hyper-elliptic integrals. The interest 
of the present work lies in the results, rather than in the mathematical difficulties 
which motivated Part 1. Although the two-dimensional bubbles considered here 
might be thought to have little connexion with the three-dimensional bubbles 
encountered in practice, the solutions derived show remarkable similarities with 
the observed behaviour of the latter. Two observations in particular may be 
singled out: a large bubble moving under a pressure gradient through a circular 
tube shows the development of a re-entrant cavity at  its rear end; small bubbles 
in flow down a circular tube tend to migrate towards the axis. Neither of these 
phenomena have, so far, been successfully explained, so that the fact that the 
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two-dimensional solutions show just this behaviour would seem to be worth 
recording. 

We first recall some of the basic results from Part 1. A two-dimensional Stokes 
flow in the Cartesian x, y plane may be described in terms of two functions $(z) 
and x ( z )  of the complex variable x = x+iy, which are analytic within the flow 
domain. In terms of these, the velocity components (u, v) are given by 

- v + iu = $(z)  + x9’(z) + x ’ (z ) ,  

01 + ip/,& = - 4$’(2), 

(1.1) 

(1.2) 

while the vorticity w and the pressure p are given by 

where /L is the viscosity, and an overbar is used to denote the complex conjugate. 
For flows about bubbles, where there is no net force or couple on them and 

no source within them, both $(z )  and x ( z )  are single-valued in the flow domain. 
In  the present case of a single bubble, the boundary conditions to be satisfied 

at  its surface may be written as 
Z&) + x ( z )  = 0 (1.3) 

and 
T az 

Re (- $ ( x ) )  = - 
as 4P , 

where T is the surface tension and d/ds represents differentiation with respect to 
arc length along the free surface in a direction which leaves the bubble on the 
left. The pressure has here been taken to be zero within the bubble. These 
conditions then determine $ ( z )  and ~ ( z )  uniquely. 

2. Two-dimensional bubble at the centre of a parabolic flow 
We ikst of all consider the symmetric situation illustrated in figure 1. The 

x axis is the line of symmetry in the direction of the basic flow and the flow is 
steady with respect to these axes. With the dominant parabolic flow at infinity 
given by (u, v) N ( - By2, 0) we require 

where pm is the (unknown) pressure on x = 0 as IyI 3 co, and there is a pressure 
gradient of magnitude 2Bp driving this flow. 

Proceeding as in Part 1, we map the flow domain onto the exterior of the unit 
circle in the [plane by z = w(c), where w([) is analytic in I[] 2 I. This mapping 
is unique if we require w([) N a6 as 151 -+ co, where a is a real constant. a is related 
to the bubble size and may be regarded as given: for large surface tension values, 
when the bubble has a circular cross-section, a is just the radius but, in general, 
it  is not simply related to any geometrical property of the cross-section. As the 
other parameters vary, the same value of a will correspond to bubbles with 
different cross-sectional areas (see Part 1, 3 5). We may choose the position of the 
origin in the x plane so that w([) = ac+ O(l/[) as Igl -+ 00. The symmetry of the 

- present problem implies 

w(6) = w ( 0  
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FIGURE 1. Co-ordinate system for the bubble at the centre of the parabolic flow. 
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If we define @([) = $(w(c)) and X(g) = x(w(c)), these are both analytic func- 
tions of gin 161 > 1, while 

The boundary conditions (1.3) and (1.4) on the bubble transform into two con- 
ditions to be satisfied on the unit circle = 1 (I?, say), vie. 

W o @ ( C )  +X(Y) = 0 (2.4) 

and Re {iCW'(C) W) = W 4 P )  lW'(5) I. (2.5) 

w(5) = -XC1/5)/@(1/S) for IS1 6 1, (2.6) 

Condition (2.4) implies that the analytic continuation of w(c) into the interior 
of I? is given by -- 

and hence, using (2.3), 

as -j. 0. w(5) N -+- 
3c 3BP 
a Pca 

Apart from this simple pole at the origin, the only other possible singularities of 
w(g) are poles at points inside I' which are inverse to zeros of @(c). 

As T --f 00 we expect the bubble to have a circular section and p ,  -+ - 03. It 
follows from (2.3) that we must then expect a zero of @(c) within the flow field 
which approaches infinity. In  fact, this simple limiting case may be solved by 
separating variables in the governing biharmonic equation. With z = reis the 
result may be expressed in terms of a stream function $ as 

$(T, 0)  = - 4B(r3 - a4/r) sin3 0.  (2.8) 
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Translated into the present formalism, this yields a @(C) which has just the one 
zero in the flow a t  infinity. We would therefore expect that, for general values of 
the surface tension, @(6) has one, and only one, zero within the flow field. It then 
follows from (2.6) that w(6) must be of the form 

, where g= -& 8) a 3Bpa’ (2-9)  

and the zero of @(c) is at  l / E .  In fact, in the present instance, (2.2) will imply that 
both a and p are real, while we must ensure that 1011 < 1, and that the four zeros 
of ~ ‘ ( 5 )  are all in I[\ < 1. 

As in Part 1, the other boundary condition (2.5) now allows @(5) to be analytic- 
ally continued into 151 < 1. We then effect the decomposition 

a/{w’(5)w’(1/C)}~ = F+(5) + E L K ) ,  (2.10) 

where F+([) is analytic in 151 2 1 and vanishes a t  infinity, while Z ( 5 )  is analytic 
in 161 6 1, each being expressible as a contour integral involving the mapping 
function. This furnishes the functional relation, valid for all 6, 

(2.11) 

But we know that the expression on the left-hand side is analytic in 151 3 1 and 
tends to 

tiaB(C+ 3b/a) as 161 -+ a, 

while the right-hand side is analytic in lcl < 1, except for a pole at the origin, 
where it behaves as 

It thus follows, by Liouville’s Theorem, that each side is equal to 

plus the same constant, so that 
W a K -  1/5), 

(2.12) 

and 3 p  = ( T / a 2 B p )  aE-(O). (2.13) 

A further condition has now to be imposed, for @(C) must have a zero at l /a .  
Since w’([) cannot have a zero there, this simply requires that the right-hand side 
of (2.12) vanishes at 5 = l / a ,  or 

a2- 3/3- 1 = (2T/a2Bp)  aF+(l/a). (2.14) 

The problem for given surface tension is thus reduced to the solution of the 
coupled pair of transcendental equations (2.13) and (2.14) for a and /3. The 
mapping (2.9) then gives the bubble outline, while (2.12) and (2.6)funish @([) 
and X(6) to give a complete description of the flow. 
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At this stage it is instructive to consider the possibility of a solution at zero 
surface tension by putting T = 0 in (2.11). This evidently implies that /3 (and 
hence pa) vanishes, and leads to the solution 

W(C) = a(5+ 1/30,  (2.15) 

(2.16) 

(2.17) 

Hence the bubbIe section is an. ellipse with a semi-major axis of length +a in the 
flow direction and a semi-minor axis of length $a. Transforming back to the 
x plane we find that, at large distances, 

iB ia2B 
12 18 

~ ( 2 )  = --z3---z+0 

The first terms in #(z)  and ~ ( x )  give the required dominant parabolic velocity 
profile. The constant term in # ( z )  and the linear term in x ( z )  give rise to an added 
constant velocity at  infinity 

u = -4a2B. 9 (2.18) 

This is a negative velocity in the x direction, and hence such a bubble placed at  
the centre of a parabolic velocity profile will move faster than the undisturbed 
fluid velocity at its centre. Evidently, the zero shear stress at the bubble's 
surface, and the pressure drop along its length, combine to give this excess 
velocity. Since the semi-minor axis has length Qa, this excess velocity is just 
equal to the velocity difference in the undisturbed parabolic profile between the 
bubble's centre and its edge. 

Returning to the general case we have, firom (2.9), 

w'(0  = m6) /cZ(c -  El2, (2.19) 

where P(C) = (P-4 )  (6-a)2-PP(;2, (2.20) 

and P(6) is to  have its four zeros in 161 < I.  Thus the equations to be solved, (2.13) 
and (2.14), can be written, with 2 = T/a2B,u, as 

and 

where 

(2.21) 

(2.22) 
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FIGURE 2. Variation of the real parameters a and /3 with 2 for the bubble a t  the centre 
of the parabolic velocity profile. 

I?' being the unit circle in the t plane described anticlockwise. We thus have 
hyper-elliptic integrals involving the square root of polynomials of degree eight 
in the integrand, rathex than the (tabulated) elliptic integrals obtained in Part 1.  

(2.24) 

If we add (2.21) and (2.22) there results 

where (2.25) 

It follows that the equations always have the solution a = & 1, with /3 then given 
by (2,21), but this possibility must be discounted since we require la1 < 1. 

Since both G, and G3 are positive, it follows from (2.24) and (2.21) that both 
a and p (and hence pa)  are negative for positive values of 2. 

As 2 + co we have a -+ 0 and p + - Q, so that the bubble section becomes the 
expected circle. For finite values of 2, equations (2.21) and (2.22) have been 
solved numerically for a and ,8, with 2 2 0.09. (Further details are given in 
Richardson 1967.) In fact, as 2 + 0, one can see that a! +- 1 and /3 -+ 0, so that, 
in the limit, P(c)  has two zeros on the integration contour, and this leads to 
numerical difficulties for values of 2 below 0-1. Nevertheless, one can determine 
the variation of a! and /3 with Z shown in figure 2. 

Unfortunately, since a! --t - 1 at the same time as ,8 --f 0, it does not follow that 
the limiting solution as 2 -+ 0 is the same as that for Z = 0 discussed earlier: 
the bubble section in the limit depends on the limit of the ratio a/( 1 +a). Only 
if this is zero is the result the elliptical section. In  fact, the numerical work strongly 
suggests that this ratio tends to - 8, but attempts to prove this analytically have 
failed. (In view of the difficulties encountered in the asymmetric situation dis- 
cussed later, a rigorous proof ought not to assume the existence of a solution 
for small 2.) If we accept this value, the limiting section consists of the ellipse 
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FIGURE 3. Bubble shapes at the centre of the parabolic velocity profile for varying 2. 

(4 (b)  (4 (4 (4 (f 1 
2 4 2 1 0.5 0.1 0 
a - 0.235 - 0.409 - 0.608 - 0.772 - 0.945 - 1  
,8 -0.315 - 0.279 -0.215 - 0.145 - 0.043 0 

together with the circle of curvature at the rear of the ellipse with radius $a 
and centre ( - a, 0). The viscous fluid occupies the exterior of the ellipse and the 
interior of the circle. Since the circle arises from an infinitesimally small region 
about 6 = - 1 in the 5 plane, there is no fluid motion within it. This is also 
evident physically, for the surface could not remain circular if motion were 
present. Since this fluid plays no part in the dynamics, the fact that the ellipse 
alone satisfies the limiting form of the equations is not surprising. 

The bubble shapes given by the computed values of a and p for various values 
of 8, together with the above limiting shape for Z = 0, are shown in figure 3. 
The position of the origin of the z plane is marked by a cross, and the scale imposed 
by the value of a is also indicated. From these it can be seen how the bubble 
section deforms from its circular shape as 2 decreases from infinity. An initial 
fattening at the rear, caused by the decrease of a from zero, develops into a re- 
entrant cavity at  the rear which, for small values of 8, is approximately circular 
and joins the remainder of the bubble, which is approximately elliptical, by 
portions of very large, but finite, curvature. These portions arise from the two. 
zeros of w'(g) which approach the unit circle. In  the limit 2 -+ 0 proposed above,, 
the cavity becomes totally enclosed and the large curvatures develop into cusps 
as they meet at the trailing edge. 

An expansion for large IzI reveals that, as well as the imposed parabolic velocity 
profile at  inb i ty ,  there must also be a constant velocity given by 
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2 
FIGURE 4. Variation of the excess bubble velocity with 2 for the 

bubble a t  the centre of the parabolic profile. 

This is always negative, so that the bubble moves faster than the fluid at  its 
centre for all values of 2. The variation of this excess bubble velocity with 2 is 
sketched in figure 4. For fixed a and B it is a maximum in the limit 2 + 0, when 
we recover (2.18): as 2 increases the velocity decreases and tends t o  zero as 
2 -+ co. In this limit, the section is a circle of radius a, and this contrasts with 
the behaviour of a solid circular cylinder which is free to move at the centre of 
a parabolic velocity profile. A simple calculation shows that such a cylinder of 
radius a moves slower than the undistributed fluid velocity a t  its centre by an 
amount +a2B: there is a velocity defect, and the cylinder moves with a velocity 
which is the mean value of the basic flow velocity over the diameter perpendicular 
to  the flow. 

3. Two-dimensional bubble off-centre in a parabolic flow 
Consider now the asymmetric situation illustrated in figure 5, where the bubble 

is placed a distance A from the centre of the parabolic profile. With the basic 
flow at infinity given by (u, v) N (By(2A - y), 0) we require 

The working is very similar to that of § 2, but the mapping w(g) now shows no 
symmetry. It may still be expected to have the form 

but a and /3 will be complex. The analytic continuation of w(5) into the interior 
of the unit circle now yields 
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FIGURE 5. Co-ordinate system for the bubble off-centre in the parabolic flow. 

so that, in this case, 

and the imaginary part of ,8/a is fixed. 
Since 

(2.12), (2.13) and (2.14) are replaced by 

,8 AB T i  - --a +QaBi---+-P 
a 2 2pa + laB(l 4 E  -) 

Equation (3.4) can be combined with (3.6) to give 

A 
%+4-i = ZF-(O), 
a a  

(3.7) 

while the identity (equation (3.19) of Part 1) 

F+(1/0 = F-(5) - F-(O) 
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H- n + 
FIGURE 6. Bubble shapes off-centre in the parabolic velocity profde for varying A/a with 
z = 2. 

(4 ( b )  (4 
0 0.2 0.6 

- 0,409 - 0.401 + 0.043i - 0.348 + 0.112i 
P - 0.279 - 0.265 + 0.137; -0.168+0.361i 

Ala 
& 

(4 ((3) (f 1 
1 3 7 

& - 0.276 + 0.147i -0.078+0.131i - 0.020 + 0.067i 
- 0.033 + 0.49% 0.441 + 0.454; 0-594+ 0.276; 

Ala 

P 

allows (3.6) and (3.7) to be combined as 

1 3,8 2Ai 
a a  a a--+-+- = 22P-(a), (3.9) 

where 2 = T/a2B,u, as in $2.  For given values of 2 and Ala, the coupled pair 
of equations (3.8) and (3.9) are to be solved for the complex parameters a and p. 
This can be done numerically and has been carried through for a number 
of fixed values of 2, for varying A/a. Further details and typical results may be 
found in Richardson (1967). The resulting variation in the bubble shape for 
2 = 2 is shown in figure 6. 

For small values of 2 there are again difficulties, as in the symmetric situation. 
For example, for 2 = 1 it  was possible to obtain sensible solutions for a and p 
only for A/a < 0.58. The range of shapes for A/a up to this value is shown in 
figure 7 and it is evident that, for A/" = 0.58, there is a zero of w'(c) very close 
to the unit circle, and it seems likely that larger values will push this zero onto 
the integration contour, when a solution will cease to exist. This conjecture is 
supported by the observation that an attempt to obtain a solution a t  zero surface 
tension, as was possible for A = 0, fails for A $. 0. It is not clear, however, whether 
this breakdown occurs for all values of 8, if A/a is made large enough, or whether 
it is restricted to the smaller values. Experiments by Taylor (1934) and Rum- 
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+-a+ 
FIGURE 7. Bubble shapes off-centre in the parabolic velocity profile for varying A/a with 
z =  1. 

(a)  ( b )  (c )  (4 (el 
A/a 0 0.1 0.3 0-5 0-58 
a - 0.608 - 0.599 + 0.019i - 0.533 + 0’051i - 0.455 + 0.079i - 0.429+ 0’089i 
p -0.215 -0.212+0*086i -0*193+0*234i -0*163+0.340i - 0*147+0*376i 

scheidt & Mason (1961) show that a three-dimensional bubble placed in a shear 
flow tends to break up if the shear rate is too high. The results of Part 1 show that 
a solution for a two-dimensional bubble in a shear flow is possible for any shear 
rate, but these experimental observations suggest that one ought not to  expect 
solutions to exist under all conditions. 

As in the symmetric case, we can determine the behaviour at large distances 
and find that, as well as the parabolic velocity variation, we must impose a con- 
stant velocity, now given by 

For A / a  positive we find that both u and v are negative. The negative value of u 
once more implies that a bubble in a parabolic flow will move faster than the 
undisturbed fluid velocity at its centre, its centre being defined as the origin of 
the z plane which emerges from the transformation (3.2). The negative value of v 
is here of more interest for, in this low Reynolds number limit, a change of axes 
can be made, and this then implies that a bubble placed off-centre in a parabolic 
flow will drift, with velocity -0, towards the central position. This procedure 
involves the usud arguments to justify the application of the Stokes equations 
to a quasi-static situation (see Happel & Brenner 1965, p. 53, for example). The 
variation of this drift velocity with A/a for given Z is sketched in figure 8. 
A similar sketch for the excess velocity may be found in Richardson (1967). 

As A/a becomes large one might expect the drift velocity to become small, 
since the flow approaches a shear flow more closely. However, this expectation 
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2 = 2  

z= 10 

z= 100 1 1 2 3 4  5 6 7 

z= 100 1 1 2 3 4  5 6 7 

FIGURE 8. Variation of the drift velocity of the bubble towards the centre of the parabolic 
velocity profile with A/a, for given values of 2. 

is not justified, for a parabolic profile u = - By2 gives a local shear k = - 2By 
and a local rate of change of shear dkldy = - 2B. The drift velocity across the 
basic streamlines is evidently produced by a coupling between the shear and 
its rate of change, for it vanishes when the former vanishes at the centre, and 
also vanishes when the latter vanishes in a pure shear flow. Since neither of them 
vanish at large distances in a parabolic flow, this velocity should not be expected 
to approach zero there. Indeed, the numerical work suggests that the drift 
velocity increases with A/" in the range where a solution can be found, this being 
a natural consequence of a coupling between a rate of change of shear which 
remains constant and a shear which is increasing. In  general, the behaviour of 
a deformable body in a flow field is more complex than might be expected from 
an analysis which regards it as being in a shear flow of the appropriate local 
strength, for this imposes a symmetry on the geometry which will not normally 
be present ir practice. 

4. Concluding remarks 
As was noted in the introduction, the two-dimensional solutions obtained in 

the present paper show many features in common with the observed behaviour 
of three-dimensional bubbles. TWO of these are, perhaps, worth mentioning in 
more detail. 

Experiments by Cox (1963) and Goldsmith & Mason (1963) in which fairly 
large inviscid bubbles were introduced into a viscous fluid flowing through 
a circular tube show that the steady motion which ultimately results involves 
a bubble shape with a re-entrant cavity a t  the rear which is closely spherical, 
provided the surface tension is not too large. A photograph of such a bubble, 
taken from Cox (1963), is shown in figure 9 (plate 1). The bubble here is, of course, 
axially symmetric, but, the lighting is such that we see its section in a plane 
through its axis. Moreover, the walls of the tube are obviously having a strong 
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effect on the motion. Nevertheless, the similarity with the two-dimensional 
solutions obtained here is rather striking. 

Experiments with small bubbles introduced into a fluid flowing through 
a circular tube show that they migrate to the axis even a t  very low Reynolds 
numbers (Goldsmith & Mason 1982) in contrast to the behaviour of solid, 
neutrally buoyant spheres, which show a migration across the streamlines only 
at higher Reynolds numbers. Chaffey, Brenner & Mason (1965) consider this 
drift of the bubbles to be a wall effect, but it is evident that the curvature of 
the velocity profile alone, with the consequent asymmetry of the bubble outline, 
could also produce such a velocity. 

The author is grateful to Dr B. G. Cox, of the University of Otago, Dunedin, 
New Zealand, for permission to reproduce the photograph of figure 9 from his 
dissertation. This thesis contains a large number of similar photographs which 
deserve a wider audience. 
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